New Discoveries in Cranberry Bud Development

Lisa Wasko DeVetter WSU Mount Vernon February 2015

Cranberries in Wisconsin

- Wisconsin provides 50-60% of the nation's supply of cranberries
 - 21,100 acres harvested in 2013
 - Total value ~\$1.9 million
- Grown in "marshes", not "bogs"
- Increasing acreage of new cultivars
- How do these new cultivars differ in yield traits, especially bud development?

Cranberry Bud Biology 101

Vegetative Upright Reproductive Upright vegetative meristem and, in some instances, flower initials

What Did We Formerly Know?

- Goff (1901)
 - Flower initials begin to form in early September in WI

Lacroix (1926)

 Flower buds of 'Howes' and 'Early Blacks' visible by mid-August in MA; no bud growth occurs during winter, but resumes in spring

Roberts and Struckmeyer (1943)

Flower initials identifiable by 29 July

Reproductive Bud Induction in 'McFarlin'

> A. 19 June B. 21 July C. 29 July D. 17 Aug. E. 8 Sept.

Yield Prediction and the Role of Buds

Yield prediction often relies on visual assessment of bud set during the year prior to harvest

Project #1 Objectives

Compare, across cultivars:

- 1. Bud development and floral initiation throughout an entire growing season
- Relationship between bud external appearance and the presence/ absence of floral initials

3. Potential for return bloom (i.e., "rebud")

Methodology

- 2011 → 100 uprights/bed every two weeks from 5 March to 7 Dec.
- 2012 → 70 uprights/bed, twice per week from 5 July to 30 Aug.; then collected 14 Sept. & 26 Oct.
 - Separate samples based on fruiting status
 - Bud dissections
 - Relate development to Growth Degree Days (GDD)
 - Base = 45 °F and Max = 86 °F

Cultivars Sampled

Cultivar	Release date	Parentage	Origin
Searles	1893	Native selection	Wisconsin
Stevens	1950	McFarlin x Potter	New Jersey
HyRed	2003	Stevens x Ben Lear	Wisconsin
Crimson Queen	2006	Stevens x Ben Lear	New Jersey

Scanning Electron Microscopy (SEM)

Cumulative Growth Degree Days (GDD) 2010-2012

 Many assumed vegetative buds actually contained flower initials (excludes 'Searles')

(Bar = 10 microns)

'Searles'

Mean Bud Width, Upright Status, and Presence of Flower Initials

Upright category

Rebud Potential

Rebud = % reproductive uprights with flowers in terminal buds

Cultivar	Rebud potential [mean ± sɛ (%)] [*]	
Searles	5.6 ± 4.3 b	
Stevens	24.8 ± 5.1 ab	
HyRed	41.1 ± 2.0 a	
Crimson Queen	38.8 ± 5.5 a	
P-value	0.0008	

*No interaction due to year, 2011 and 2012 data combined.

Conclusions & Applications

- Time more strongly related to floral initiation, not GDD
- Cultivars differ in external bud appearance
- Wider buds are more likely to contain flower initials
- New cultivars have a greater potential for rebud

What is the role of carbohydrates across cultivars that differ in rebud?

Project #2 Objectives

- 1. Measure plant carbohydrates across different cultivars that differ in rebud potential
- 2. Assess if carbohydrate limitations within an upright contributes to biennial bearing

Methodology

- Cultivars 'GH1', 'Stevens', and 'HyRed'
- Location Juneau county, WI
- Sampled six growth stages in 2013:

- 1. Prebloom (4 June)
- 2. Full bloom (2 July)
- 3. Late bloom/early fruit set (30 July)
- 4. Fruit and bud development (27 Aug.)
- 5. Fruit harvest (19 Sept.)
- 6. Postharvest (30 Oct.)

Methodology

- Compared total plant carbohydrates:
 - Total nonstructural carbohydrates (TNSC)
 - Soluble sugars (SS)
 - Starch
 - Tissues:
 - Uprights and roots
 - Current and previous season's growth pooled
 - Fruit
 - Also collected yield and rebud data

Results

- Carbohydrate concentrations:
 - Uprights > Roots
 - Vegetative > Reproductive
 - No differences in fruit across cultivars

Yield and Return Bloom Results

- No differences in yield across cultivars
- Differences in rebud potential (P-value < 0.05):</p>

- 'GH1' 1%
- 'Stevens' 20%
- 'HyRed' 19%

Reproductive Upright TNSC

Conclusions & Applications

- Cultivars differ in rebud potential and carbohydrate concentrations
- Carbohydrate limitations during fruit set and development <u>may</u> contribute to biennial bearing by reducing rebud
- How do some cultivars circumvent biennial bearing?
- How do we manage these new cultivars with enhanced rebud potential?

Acknowledgements

- Wisconsin cranberry growers
- Wisconsin State Cranberry Growers Association
- Biological & Biomaterials Preparation, Imaging, and Characterization Laboratory at the University of Wisconsin – Madison
- The Harbut Lab

Questions & Discussion
