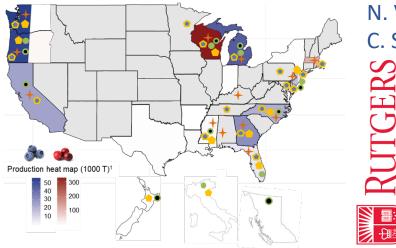
WSU Small Fruit Update: VacciniumCAP, Pollination, and Cold Hardiness

Lisa Wasko DeVetter Assistant Professor of Horticulture Washington State University

Small Fruit Horticulture Program

WASHINGTON STATE UNIVERSITY

NORTHWESTERN WASHINGTON RESEARCH & EXTENSION CENTER


- Lead state-wide small fruit horticulture research and extension program
- Focus: Whole-plant physiology of small fruit crops in response to alternative management systems designed to promote plant productivity, fruit quality, on-farm efficiencies, and the health of adjacent natural resources
- Crops: Red raspberry, blueberry, and strawberry

VacciniumCAP: Leveraging Genetic and Genomic Resources to Enable Development of Blueberry and Cranberry Cultivars with Improved Fruit Quality Attributes

Vaccinium Team

MICHIGAN STATE UNIVERSITY P. Edger

Agricultural Research Service C. Finn, N. Bassil, K. Hummer J. Polashock

M. lorizzo

M.A. Lila

P. Perkins

P. Munoz

D. Chagne, R. Espley Plant & Food **RESEARCH** RANGAHAU AHUMARA KAI

WASHINGTON STATE

[JNIVERSITY

L. DeVetter K. Gallardo D. Main

C. Li

NC STATE

UNIVERSITY

ITY UNIVERSITY OF GEORGIA FOND EDMUN

Michael Coe

Breeding Traits Survey

Distributed 2016-2017 Survey questions:

<u>1-7. Traits</u> - Fruit quality (10)
 Disease resistance (18)
 Pest resistance (16)
 Stress tolerance (5)
 Other traits (4)
 Plant architecture for machine harvestability (8)
 Most important traits (6)

United States Department of Agriculture National Institute of Food and Agriculture Award #: 2016-51181-25401

13 grower assoc. meetings Cranberry: 3 states Blueberry: 10 states

8-13. Demographics – Profession

Farm size Years of experience Cultivars in production Cultivars re-planted Farm-business location

Target stakeholders:

- Growers
- Nurseries
- Processers/packing houses
- Breeders
- Scientists

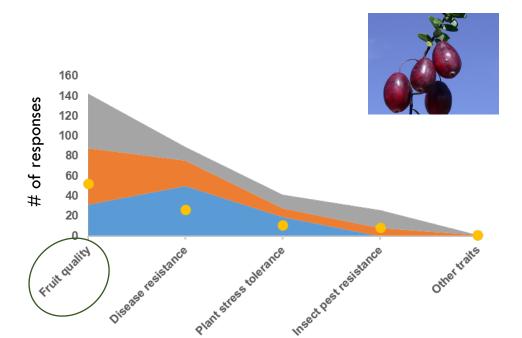
Breeding Traits Survey Distribution

Meetings:

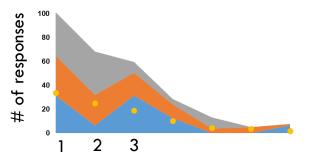
1) Massachusetts Blueberry Growers Association Meeting (MA)

- 2) Cranberry School (WI)
- 3) American Cranberry Growers Association Winter Meeting (NJ)
- 4) Blueberry Open House (NJ)
- 5) Alma Blueberry Update (GA)
- 6) Florida Blueberry Growers Association Spring Meeting and Trade Show (FL)
- 7) Oregon Blueberry Conference (OR)
- 8) Lynden Small Fruit Conference (WA)
- 9) Lower Mainland Horticultural Improvement Association Short Course (BC, Canada)
- 10) Blueberry Open House and Trade Show (NC
- 11) Great Lakes Expo (MI)
- 12) Cape Cod Cranberry Growers Association Meeting (MA)
- 13) Gulf South Blueberry Growers Association Meeting (MS)

Survey Results – Cranberry


>500 respondents

- Growers (>80%)
- Nurseries


Improving Fruit Qualit

- Processers/packing houses
- Breeders/scientists

Fruit quality is a top breeding priority

- 1- Firmness
- 2- Fruit size
- 3-Anthocyanin content

Survey Results Published

Fruit quality is a top breeding priority

HORTSCIENCE 53(10):1467-1474. 2018. https://doi.org/10.21273/HORTSCI13219-18

Breeding Trait Priorities of the Cranberry Industry in the United States and Canada

R. Karina Gallardo

School of Economic Sciences, Puyallup Research and Extension Center, Washington State University, 2606 W. Pioneer Street, Puyallup, WA 98371

Parichat Klingthong

Fiscal Policy Office, Ministry of Finance, Khet Pahya Thai, Krung Thep Maha Nakhon, Thailand, 10400

Qi Zhang

VacCAP

School of Economic Sciences, Washington State University, P.O. Box 646210, Pullman, WA 99164

James Polashock USDA-ARS, 125A Lake Oswego Road, Chatsworth, NJ 08019

Amaya Atucha

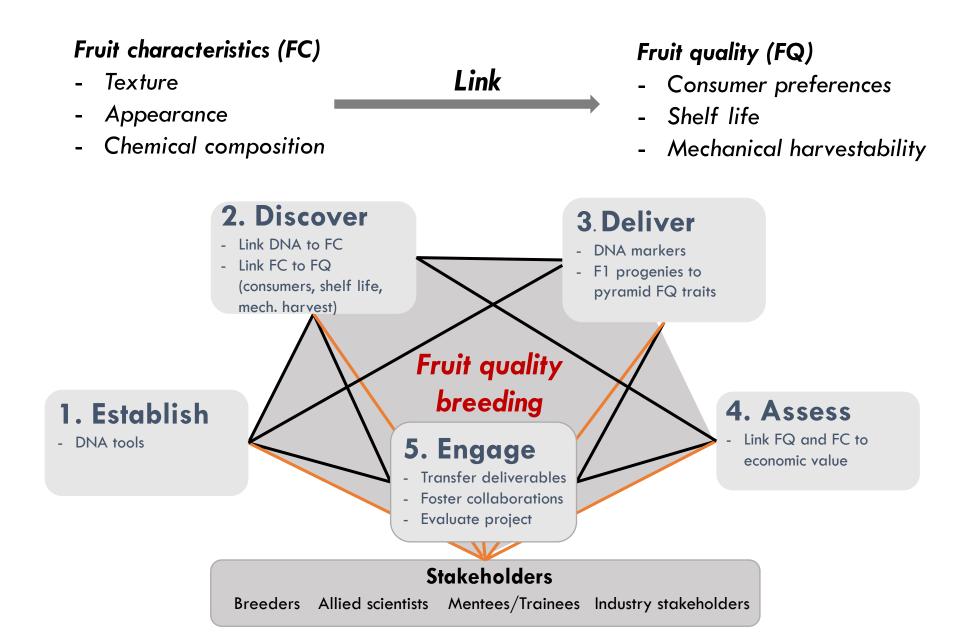
Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706

Juan Zalapa

USDA-ARS, Vegetable Crops Breeding Unit, Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI 53706

Cesar Rodriguez-Saona and Nicholi Vorsa

P. E. Marucci Blueberry and Cranberry Research and Extension Center, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019


Massimo Iorizzo¹

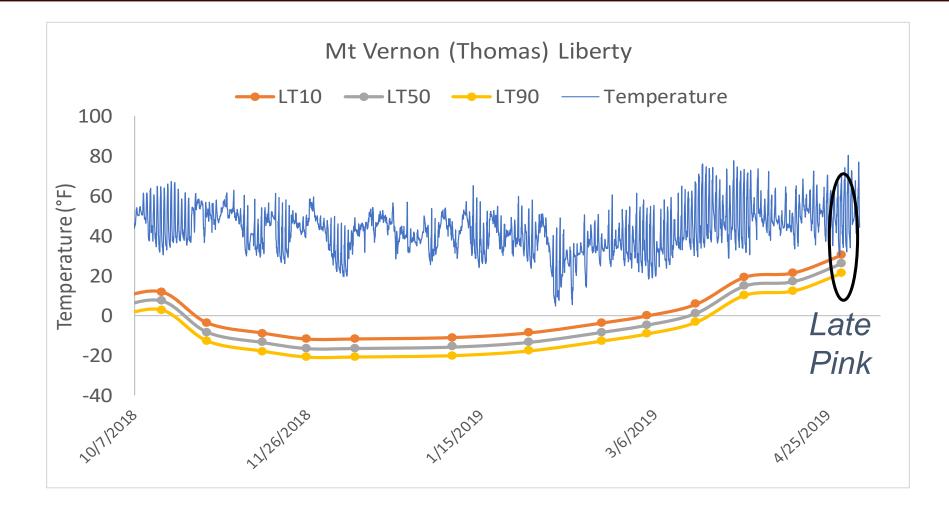
Plants for Human Health Institute and Department of Horticultural Science, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081

VacCAP

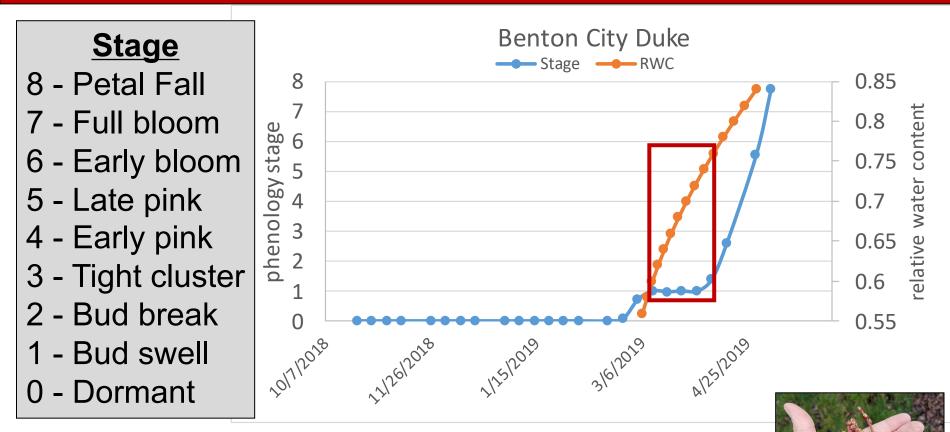
Thank You

Determining Cold Hardiness in Washington Blueberry

Gwen Hoheisel, Lisa DeVetter, Lav Khot, and David Gibeaut



Overarching Objectives: Develop Predictive Cold Hardiness Models for Several Blueberry Cultivars


■ Facebook Staff Popular Links Northwest Forecast State Climate Glossary AWN en Español Contact AWN Help Welcome to AgWeatherNet	
lease refer to WSU's Viticulture and Enology Cold Hardiness website.	
Select Station 🔻 Season: 2017-2018 🔻 Cultivar: Cabernet Sauvignon 🔻	AWN station,
Use map to select Refresh Switch to Metric Remove Alder Rid	🦉 year, cultivar
	year, cuitivar
Alder Ridge Alderdale Benton City West Juniper Moses Lake WSU Prosser (WSU HQ)	
Bud10: Modeled critical temperature has not been attained Bud50: Modeled critical temperature has not been attained	
Bud90: Modeled critical temperature has not been attained	
Grape Cold Hardiness Model Alder Ridge, Alderdale, Benton county; 2017-2018 Season Cabernet Sauvignon; Bud50 on May 01, 2018 was 29,4 °F	
MARA AND A AMAM	Max and Min
	Temperatures
-20 Oct 01 Oct 23 Nov 14 Dec 06 Dec 28 Jan 19 Feb 10 Mar 04 Mar 26 Apr 17 2017 2017 2017 2017 2017 2018 2018 2018 2018 2018 2018 Date — Temp — Temp — Min Bud 10 Bud 50 Bud 90 Source: WSU AgWeatherNet (weather.wsu.edu) Wed Oct 31, 2018 at 10:43 am	Hardiness Temperature

WSU AgWeatherNet: https://weather.wsu.edu/

Blueberry Cold Hardiness Model undergoing Beta Testing in 2020

Can Relative Water Content (RWC) in Buds Predict Hardiness?

- Water content affects cold hardiness
- Lots of water gained at bud swell
- RWC could allow rapid estimates of hardiness

Increased Hive Densities Promote Honey Bee Pollination in Blueberry

Lisa Wasko DeVetter Students: Weixin Gan and Matt Arrington Washington State University

WREC Est. 1947

Honey Bees are Important Pollinators

- Honey bees (Apis mellifera ligustica) pollinate over 130 crops, including blueberries and cranberries
- Weakness of *ligustica* includes poor foraging at temperatures below 55 °F, with moderate winds (>12 mph), and with precipitation (Woyke et al., 2003)
- How do we optimize to ensure good pollination?

Revisiting Hive Stocking Densities

Invest in pollination for success with highbush blueberries

For profitable yields, investing in pollination of highbush blueberries is crucial.

Cultivar	Low rate	High rate		
	Hives/acre			
Rubel, Rancocas	0.5	1		
Weymouth, Bluetta, Bluray	1	2		
Bluecrop	1.5	3		
Elliot, Coville, Berkeley, Stanley	2	4		
Jersey, Earliblue	2.5	5		

Having an adequate number of healthy honey bee hives is important in intensive systems with high bloom density and/or low wild pollinator diversity and abundance

 Hive density recommendations may be outdated or need to be adapted for new systems

Source: https://www.canr.msu.edu/news/invest in pollination for success with highbush blueberries

Previous Studies in Washington...

- DeVetter et al. (2016) found honey bee visitation rates in western Washington were below recommended guidelines
- Studies suggests 'Duke' yield can be increased by ~2.65 lbs/plant by increasing stocking densities from 4 to 8 hives/acre (Arrington and DeVetter, 2018)

Objective

Evaluate the effects of increased honey bee hive density in 'Duke' and 'Draper' blueberry

Experiment 1 – Hive Density Procedures

- Studies conducted in Skagit and Whatcom counties
- 15 sites total in 2018 and 2019

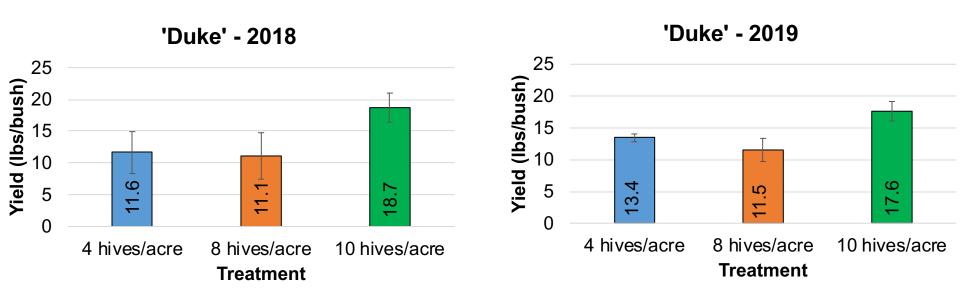
<u>Treatments – 'Duke'</u>

- 1. 3 fields, each with 4 hives/acre (control)
- 2. 3 fields, each with 8 hives/acre
- 3. 3 fields, each with 10 hives/acre

<u>Treatments – 'Draper'</u>

- 1.2 fields, each with 4 hives/acre (control)
- 2.2 fields, each with 8 hives/acre
- 3.2 fields, each with 10 hives/acre

'Duke' Stocked at 10 hives/acre

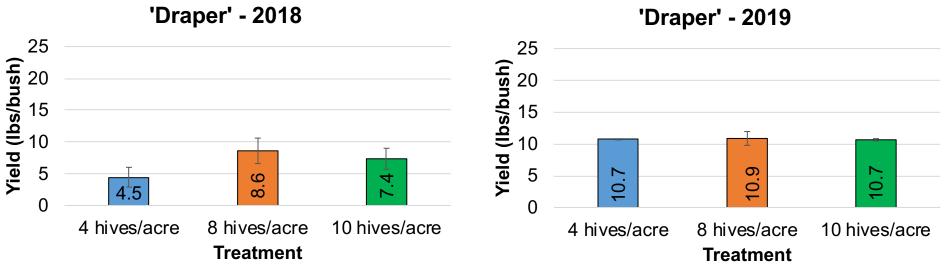

'Duke'

Density (hives/acre) [_]		ntion rate s/bush/minute) 2019	Fruit – set (%)	Berry mass (g/berry)	TSS	Seed no./berry
4	1.0 c ^z	1.5 c	79.4 b	1.7	12.5 b	40
8	1.4 b	2.8 b	74.5 b	1.8	13.5 ab	43
10	2.0 a	3.5 a	96.9 a	1.9	14.0 a	46
Significance ^y	<0.0001	<0.0001	<0.0001	0.19	0.04	0.56

^zMeans separations were performed with and Tukey's Honest Significant Difference (HSD) test or non-parametric Wilcoxon test; means with the same letter are not different at $P \le 0.05$.

^{*y*}*P*-value with significance at $\alpha = 0.05$.

No statistical effects on yield (α=0.05), but trend of increasing yield at higher hive densities


'Draper'

Density (hives/acre)	(h	ition rate oney ish/minute) 2019	Fruit set _ (%)	Berry mass (g/berry)	TSS	Seed no./berry
4	0.7 c ^z	1.2 b	67.5 b	2.2	17.6	24
8	1.4 b	1.0 c	73.4 b	2.4	16.1	33
10	1.6 a	<u>1.7 a</u>	<u>87.6 a</u>	2.4	16.3	32
Significance ^y	<0.0001	<0.0001	<0.0001	0.12	0.09	0.16

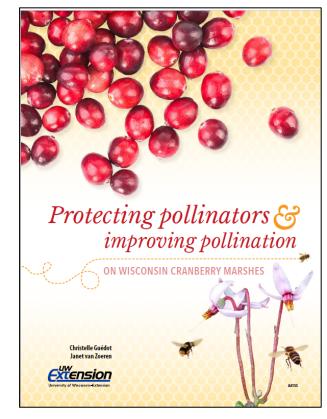
^zMeans separations were performed with and Tukey's Honest Significant Difference (HSD) test or non-parametric Wilcoxon test; means with the same letter are not different at $P \le 0.05$.

^{*y*}*P*-value with significance at $\alpha = 0.05$.

No statistical effects on yield (α=0.05)

Conclusions to Date

- Continuing to observe positive trend for increasing hive density in 'Duke' (but not 'Draper')
- Increasing hive density doesn't fix other management problems or poor hive quality
- Encourage growers to test different hive densities in small blocks
- Commercial pheromones marginally impact honey bee activity and do not improve yield components



Pollination for Cranberry

- Honey bee hive densities range 2-3 hives/acre
- ~20-30% of pollination by wild bees
- If pollination and fruit set are low, consider increasing wild pollinator habitat or honey bee hive densities
- Flower morphology can limit honey bee pollination
- Pollinator habitat may lead to competing forage sources
- Future of Bombus vosnesenskii

Sources: Bouska, Atucha, and Broussard et al., 2011

Acknowledgements

Project Assistance

- Grower cooperators
- Sean Watkinson, Huan Zhang, and Nadia Bostan
- Bev Gerdeman
- Jason Meyer
- Tom Peerbolt
- Kennedy Grant
- Kurtis Plaisted @ Grigg Honey
- Bellevue Bees

Funding

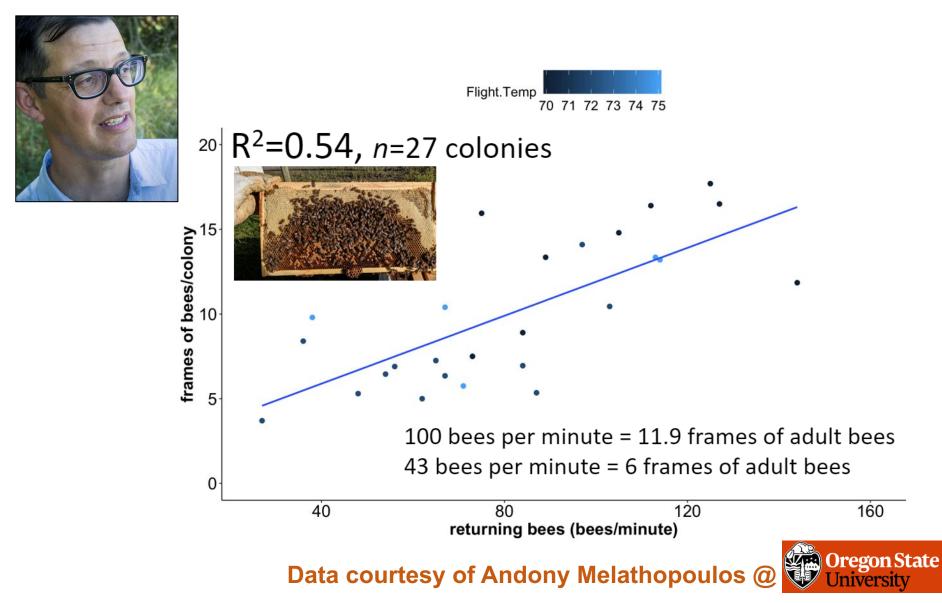
- Washington Blueberry Commission
- Northwest Agricultural Research Foundation (NARF)

Thank you! Any Questions?

- Lisa Wasko DeVetter, PhD
- Assistant Professor of Small Fruit Horticulture
- Washington State University NWREC
- Email: lisa.devetter@wsu.edu

Twitter: Lisa DeVetter @WSU SmallFruits

Data Collection Hive Density and Pheromone Experiments


- Measured pollinator activity, as described by Courcelles et al. (2013)
 - Measured activity at 15-100% bloom
 - 9:30 AM to 4 PM; ≥ 55 °F
 - N = 30 bushes/ site, measured three times/day for three days over bloom
 - Only counted "legitimate" visits
- Other variables fruit set, berry mass, seed number/berry (Strik et al., unpublished), average yield per bush, quality

Frames of Brood is Related to Activity

