Occurrence and distribution of *Tobacco streak virus* in cranberry

Lindsay Wells-Hansen

&

Patty McManus

NACREW 2015
Outline

• Identification of TSV in commercial cranberry plantings and association of TSV with fruit scarring

• Distribution of TSV within cranberry uprights

• “Recovery” of cranberry uprights infected with TSV

• Distribution of TSV throughout cranberry beds
Tobacco streak virus (TSV)

- First reported on tobacco in WI: 1936
- First detection in WI cranberries: 2001
- First reported on cranberry: 2012

- Type member of *Ilarvirus* genus
- Family *Bromoviridae*
- Broad host range (>80 plant spp.)
- ID by DAS-ELISA, RT-PCR, coat protein sequence, TEM
Berry scarring reported mid-July

- Scarring on every berry on an upright
- Every upright on a runner was affected

Sampling and virus testing

- TSV was detected
Berry scarring
Hail damage associated with TSV
Not all berry scarring is associated with TSV.

LeMunyon, TSV-negative, BlShV-positive

Mullica Queen, TSV-positive, BlShV-negative
Distribution of TSV within cranberry uprights

- Throughout the growing season
 - Current season leaves
 - Previous season leaves
 - Terminal buds
 - Pollen
 - Flowers
 - Berries (scarred and non-scarred)
 - Roots
Distribution of TSV within a cranberry upright that produces scarred fruit

Pre-bloom Bloom Early fruit set Late fruit set Harvest
All plant parts test positive for TSV in the year following scarring.

0/73 uprights produce scarred berries in the year following scarring!
Uprights become tolerant to TSV the year following symptoms
Distribution of TSV within a cranberry upright that produces non-scarred fruit

Pre-bloom Bloom Early fruit set Late fruit set Harvest
Effect of TSV on yield components in symptomatic and “recovered” cranberry uprights

- Number of flowers per upright
- Number of berries per upright
- Percent fruit set
- Berry weight
Does TSV have an effect on yield components?

Average percent fruit set per upright
(# berries/# pedicels)*100

Marsh 1

Marsh 2
Incidence of TSV throughout an affected cranberry bed

~ 450 ft.

~ 108 ft.
2014 incidence of TSV in a bed (cv. Mullica)

67% of uprights sampled were TSV-positive in 2014

Significant (p< 0.001) clustering of TSV-infected uprights at the local scale
2015 incidence of TSV in a bed (cv. Mullica)

= TSV-positive
= TSV-negative

71% of uprights sampled were TSV-positive in 2015

Significant (p<0.001) clustering of TSV-infected uprights at the local scale

This end of bed not sampled
2014 incidence of TSV in a bed (cv. Mullica)

= TSV-positive

= TSV-negative

= lost sample

1% of uprights sampled were TSV-positive in 2014

Significant ($p \leq 0.05$) clustering of TSV-infected uprights at a larger scale
2015 incidence of TSV in a bed (cv. Mullica)

- TSV-positive
- TSV-negative

2% of uprights sampled were TSV-positive in 2015

Random distribution (p ≥ 0.05) of TSV-infected uprights at local and larger scales
Summary

- TSV is associated with berry scarring in cranberries
- Distribution of TSV within cranberry uprights is uneven
- TSV does not negatively affect yield components tested in uprights that have developed tolerance to the virus
- Evidence of clustering of TSV-infected uprights within affected beds exists at a local scale at some locations
Acknowledgements

Growers/crop consultants
WI crop consultants
Ocean Spray crop consultants
Cranberry Grower Cooperators

Collaborators
Tom German
Benham Lockhart
Robert Martin
Nicholi Vorsa
James Polashock
Erika Saalau-Rojas

McManus lab members
Anna Cramer
Madeleine Hughan
Sara Thomas-Sharma
Victoria Kartanos

Funding sources
USDA-HATCH
Wisconsin Cranberry Board, Inc.
Ocean Spray Cranberries, Inc.
The Cranberry Institute
Senator Robert Caldwell Graduate Fellowship

Plant Disease Diagnostic Clinic
Brian Hudelson
Ann Joy

Seed Potato Lab
Andy Witherell
Brooke Weber
Questions?
Distribution of TSV within a cranberry upright that produces scarred fruit

Distribution of TSV within a cranberry upright that produces non-scarred fruit
Incidence of TSV throughout an affected cranberry bed

• 10’ x 10’ squares
 – Divided into 16 small squares
 – One upright collected from each small square

Sampled 1,440 uprights total per bed
Analysis on multiple scales using Moran’s I

- Per upright
- Per 4 uprights
- Per 16 uprights
- Per 64 uprights
- …
Stevens, TSV-negative, BlShV-positive

Mullica Queen, TSV-positive, BlShV-negative
- 10’ x 10’ squares
 - Divided into 16 small squares
 - One upright collected from each small square

Sampled 1,440 uprights total per bed
The “recovery” phenomenon

• Associated with various viruses (often Ilarviruses)
 – Blueberry shock virus in blueberries
 – Prunus necrotic ringspot virus in Prunus spp.

• Necrotic shock reaction followed by recovery
 – Seemingly little or no long term effects on plants (yield, longevity, etc.)