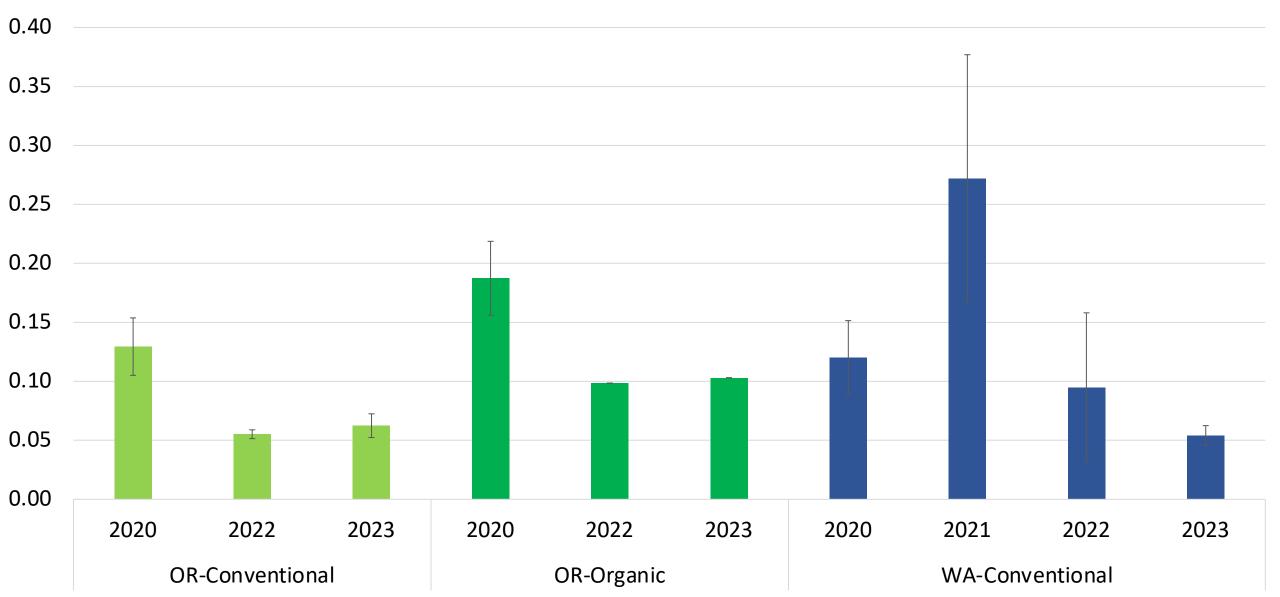

Prevalence of cranberry fruit rots in commercial production beds in Oregon and Washington

Virginia Stockwell¹, Cassie Bouska^{2a}, Don Valentine^{2b}

¹USDA Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon ^{2a}Oregon State University, Dept. of Horticulture and OSU Extension Service, Coos and Curry Counties, Myrtle Point, Oregon ^{2b}Oregon State University, Dept. of Botany and Plant Pathology, Corvallis, Oregon

Overview of Project

- Sampling of 7 Cranberry farms across Oregon & Washington from 2020-2023
- Estimated fruit rot incidence
- Pathogen Identification
- Fungicide resistance testing
- 3-year grant funded by Northwest Center for Small
 Fruit Research and base funds from USDA Project
 2072-22000-045-00D



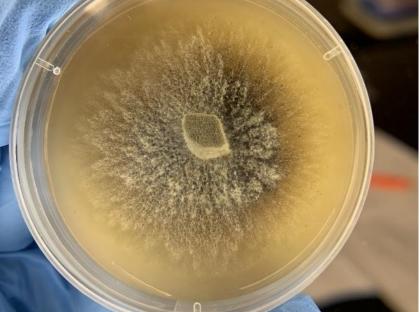
Field sampling

Berry Sorting

Rot Incidence among Oregon and Washington Cranberry Fields (2020-2023)

Culturing and Identifying Fungal Rots

- Why plate rots?
 - Accurate ID
 - Fungicide tests
- Surface disinfest
 - 10 min 10% bleach
 - 1 min 70% Ethanol
 - 1 min DI Water
- Pinch of rot onto V8 plate
 - Multiple rounds of isolation
 - Some berries have more than one pathogen


Fruits Rots and Associated Pathogens from WA & OR cranberry beds 2020-2023

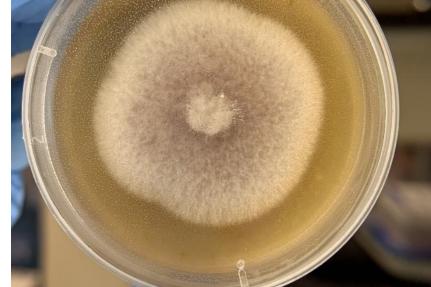
Cranberry fruit rot disease	Fungal Pathogen
Berry speckle	Phyllosticta elongata
Bitter rot	Colletotrichum fructivorum
	Colletotrichum fiorinae
Black rot	Allantophomopsis cytisporea
	Allantophomopsis lycopodina
	Strasseria geniculata
Blotch rot	Physalospora vaccinii
End rot	Godronia cassandrae
Ripe rot	Coleophoma empetri
Viscid rot	Phomopsis vaccinii
Yellow rot	<i>Botrytis</i> sp.

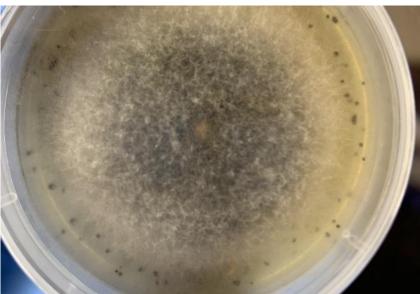
Physalospora (Blotch rot)

Coleophoma (Ripe rot)

Diaporthe (Viscid rot)

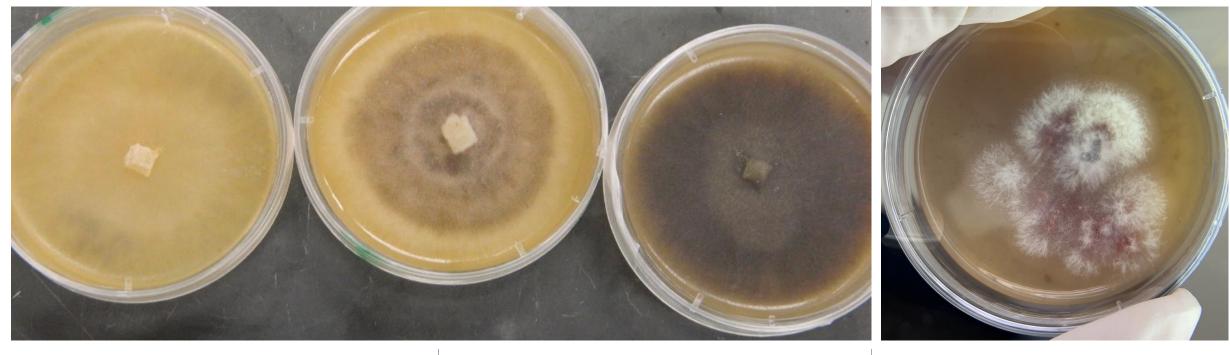
Phyllosticta (Berry speckle)





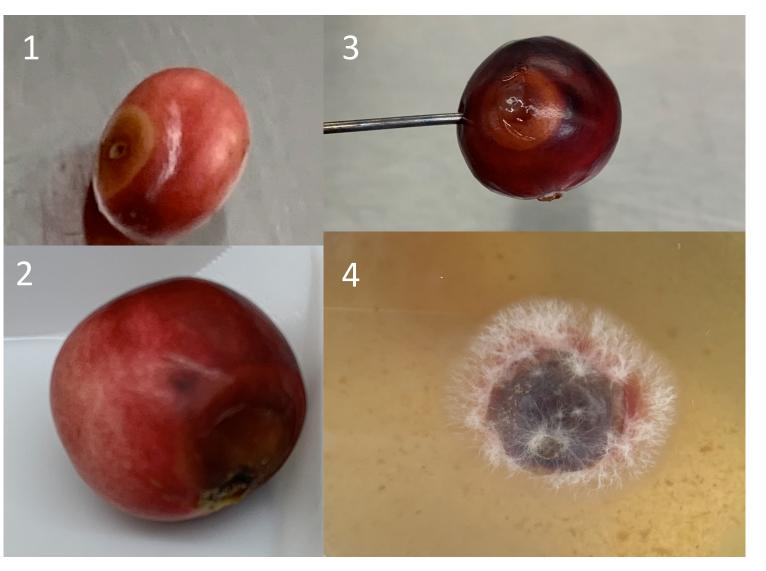
acutatum species

Colletotrichum (Bitter rots) gloeosporioides species



Black rots

Neofabraea actinidiae


Botrytis (Yellow rot)

Godronia (End rot)

Cadophora

Neofabraea actinidiae as a cranberry fruit rot

2 | Page

Bull's Eye Rot of Pome Fruit

A: BER early infection starting from a wound. Note light brown in the center and the darker halo

B: BER infection originating from C: BER originating from a a wound. Acervuli start to appear. lenticel infection on Gala.

D: BER originating from a lenticel infection on Gala. Note the difference with Photo in C.

E: BER starting from stem-bowl on Gala. Firm consistency.

calyx-end on Golden Delicious. Firm consistency.

G: Advanced stage of BER on **H:** Cross-section of a Fuji apple Fuji. White mycelium and creamcolored spore masses present.

I: Advanced stage of BER on showing internal symptoms of d' Anjou pear. Cream-colored BER staring from a lenticel and spore masses present at the center of the sunken lesion.

Figure 1. Symptoms and signs of Bull's eye rot (Neofabraea spp.) on apples and pears. Photo credit to Achour Amiri (WSU-TFREC).

stem-bowl. Note the sharp

margin.

"Bull's Eye Rot", Amiri, A, 2020.

Neofabraea lesions on 2023 cranberries

Tools for Cranberry Fruit Rot Management

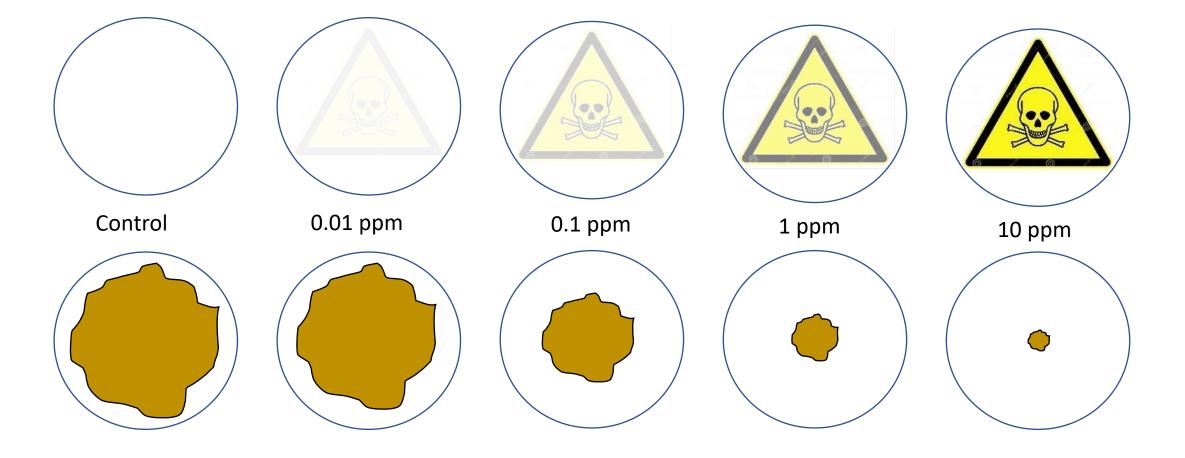
- Cultural practices
 - Upkeep of beds, removal of detritus
 - Moisture/Nutrient levels
 - Shading?
- Fungicides
 - Multi-site (Chlorothalonil, Mancozeb, copper)
 - Site-specific (FRAC 3s, FRAC 11)

Multi-site Fungicides

(Chlorothalonil, Mancozeb, copper)

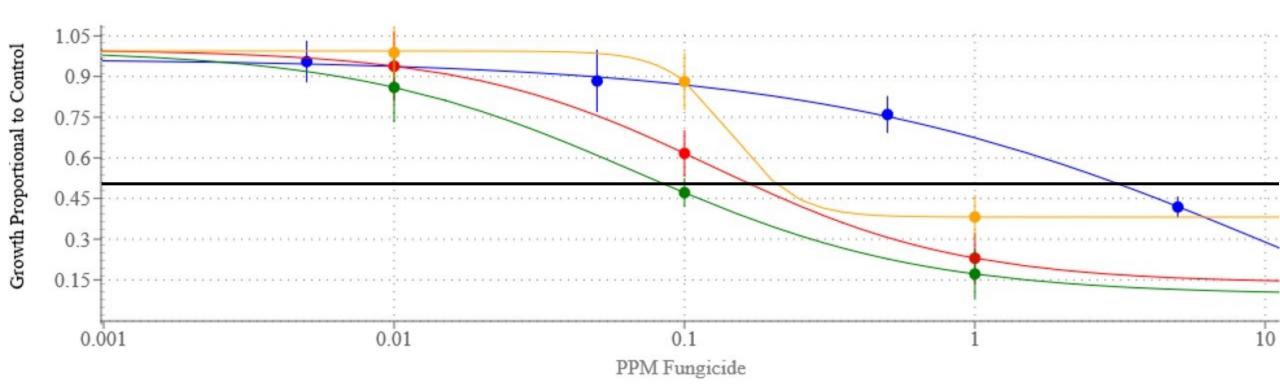
- Multiple avenues for effective action (not just hitting one target)
- Much lower chance of resistance developing to multi-site fungicides
- "Beyond protecting and prolonging the lifespan of highly effective medium to high resistance risk fungicides, multisite fungicides provide added levels and spectrum of disease control. With this they can also support the single sites to be even more efficient"-FRAC (Fungicide Resistance Action Committee)
- More likely to affect non-target organisms

Site-specific Fungicides


- Associated with lower impact on environment and nontarget organisms, but likelihood of developing resistance is higher than in multi-site fungicides
 - FRAC 3-Fenbuconazole, Difenoconazole, Prothioconazole
 - Demethylation Inhibitors (DMIs)-targets cell membrane production
 - "Generally wise to accept that cross resistance is present between DMI fungicides active against the same fungus"-FRAC

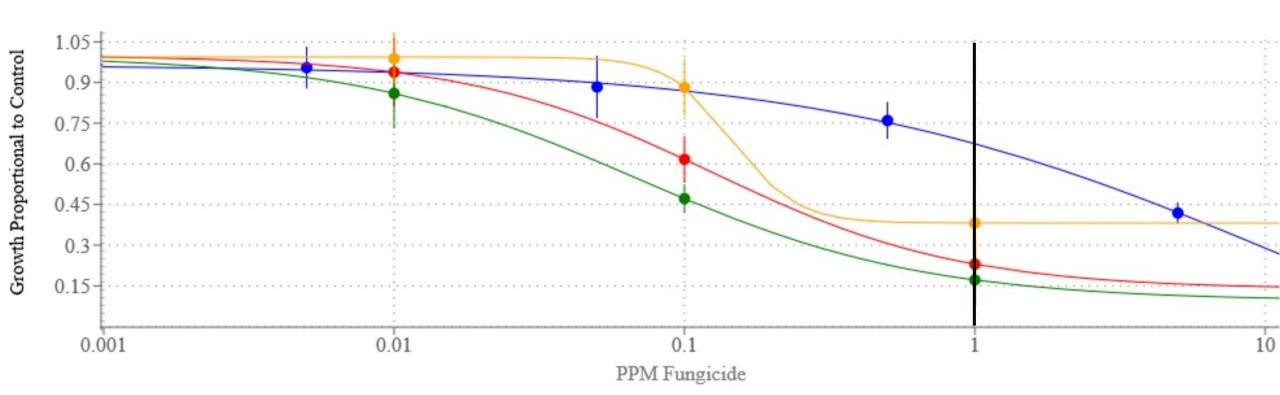
FRAC 11-Azoxystrobin

- Quinone Outside Inhibitor (QoI)- targets "respiration" of fungi
- Several mutations known to confer resistance
- Cross-resistance between all FRAC 11s (switching to another FRAC 11 won't avoid resistance)



Fungicide Assays

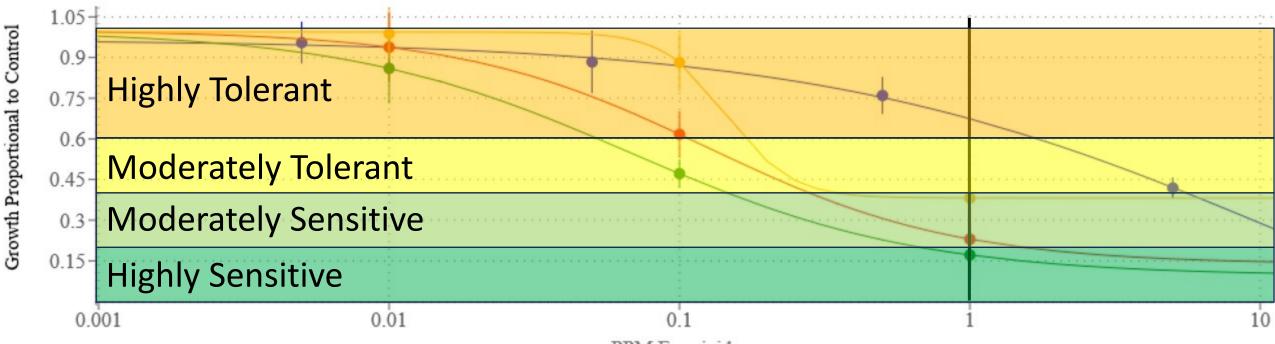
EC₅₀ (ppm) 0.09----- Difenoconazole 0.17----- Fenbuconazole 0.21----- Prothioconazole 3.19----- Azoxystrobin



Coleophoma vs. FRAC 3 & 11

Growth Proportional to Control

0.17----- Difenoconazole 0.23----- Fenbuconazole 0.39----- Prothioconazole 0.66----- Azoxystrobin


Coleophoma vs. FRAC 3 & 11

Growth Proportional to Control

0.17----- Difenoconazole 0.23----- Fenbuconazole 0.39----- Prothioconazole 0.66----- Azoxystrobin

Coleophoma vs. FRAC 3 & 11

PPM Fungicide

	Fenbuconazole	Prothioconazole	Azoxystrobin
Black Rots	HS	HS	HS 📥 HT
Diaporthe sp.	HS — MS	HS — MS	HS 📥 MT
Colletotrichum sp.	MS 📥 HT	HS 📥 HT	MS 📥 MT
Coleophoma sp.	MS	MS	МТ 📥 НТ
Physalospora vaccinii	MS	HS	HS MS
Phyllosticta elongata	HS	HS	HS
Godronia	MS 📥 MT	HS 📥 MT	HS → MS
Neofabraea actinidiae	MS	МТ	MT
Cadophora sp.	НТ	MS	MS 📥 MT

Sensitivity	Growth proportional to Control
Highly sensitive	<0.20
Moderately sensitive	0.20-0.40
Moderately tolerant	0.40-0.60
Highly tolerant	0.60<

	Fenbuconazole	Prothioconazole	Azoxystrobin
Black Rots	HS	HS	HS 📥 HT
Diaporthe sp.	HS — MS	HS — MS	HS 📥 MT
Colletotrichum sp.	MS 📥 HT	HS 📥 HT	MS 📥 MT
Coleophoma sp.	MS	MS	MT 📥 HT
Physalospora vaccinii	MS	HS	HS MS
Phyllosticta elongata	HS	HS	HS
Godronia	MS MT	HS 📥 MT	HS MS
Neofabraea actinidiae	MS	MT	MT
Cadophora sp.	НТ	MS	MS 📥 MT

MT		Growth
S MT	Sensitivity	proportional to Control
Г — НТ	Highly sensitive	<0.20
MS	Moderately sensitive	0.20-0.40
HS	Moderately tolerant	0.40-0.60
MS	Highly tolerant	0.60<

	Fenbuconazole	Prothioconazole	Azoxystrobin
Black Rots	HS	HS	HS 📥 HT
Diaporthe sp.	HS MS	HS 📥 MS	HS 📥 MT
Colletotrichum sp.	MS 📥 HT	HS 📥 HT	MS 📥 MT
Coleophoma sp.	MS	MS	MT 📥 HT
Physalospora vaccinii	MS	HS	HS MS
Phyllosticta elongata	HS	HS	HS
Godronia	MS 📥 MT	HS 📥 MT	HS 📥 MS
Neofabraea actinidiae	MS	МТ	MT
Cadophora sp.	НТ	MS	MS 📥 MT

Sensitivity	Growth proportional
	to Control
Highly sensitive	<0.20
Moderately sensitive	0.20-0.40
Moderately tolerant	0.40-0.60
Highly tolerant	0.60<

					Growth
				Sensitivity	proportional
					to Control
	Fenbuconazole	Prothioconazole	Azoxystrobin	Highly	<0.20
				sensitive	
Diaporthe sp.	HS MS	HS MS	HS MT	Moderately	0.20-0.40
Callatatrickurs an				sensitive	0.20-0.40
Colletotrichum sp.	MS HT	HS HT	MS MT	Moderately	0.40.0.00
Coleophoma sp.	MS	MS	МТ	tolerant	0.40-0.60
				Highly	0.60<
				tolerant	0.00<

~ ...

- 3 Main species- sensitivity/tolerance is consistent regardless of any other factors (species, farm, field or storage rot).
- In fields where Azoxystrobin is sprayed, we see a larger proportion of *Coleophoma sp.* as a CFR (not an increase in rot overall).

	Fenbuconazole	Prothioconazole	Azoxystrobin
Diaporthe sp.	HS MS	HS 📥 MS	HS 📥 MT
Colletotrichum sp.	MS 📥 HT	HS 📥 HT	MS MT
Coleophoma sp.	MS	MS	MT

	Growth
Sensitivity	proportional
	to Control
Highly	<0.20
sensitive	<0.20
Moderately	0.20-0.40
sensitive	0.20-0.40
Moderately	0.40-0.60
tolerant	0.40-0.00
Highly	0.60<
tolerant	0.00

- Many *Diaporthe* species alongside *Diaporthe* vaccinii.
- Variability, largely with FRAC 11-appears to be species-specific rather than spray history (acquired).

	Fenbuconazole	Prothioconazole	Azoxystrobin
Diaporthe sp.	HS MS	HS MS	HS 📥 MT
Colletotrichum sp.	MS 📥 HT	HS 📥 HT	MS MT
Coleophoma sp.	MS	MS	MT HT

	Growth
Sensitivity	proportional
	to Control
Highly	<0.20
sensitive	<0.20
Moderately	0.20-0.40
sensitive	0.20-0.40
Moderately	0.40-0.60
tolerant	0.40-0.00
Highly	0.60<
tolerant	0.00

- Two complexes: gloeosporioides and acutatum.
 - Multiple species within each complex
- Tolerance to Fenbuconazole for many *gloeopsorioides* species (Wells et al, 2014, "Fungicide Efficacy and Specificity Toward Fungi in the Cranberry Fruit Rot Disease Complex")
- Mainly see 2 *acutatum* species- both have specific sensitivities based soley on species.

To Date

- No evidence of resistance developing among strains tested
 - Low application frequency of single-site fungicides (1-2 times per year)
 - Fungicide tolerance appears species-dependent within complexes
- Some fungi are naturally tolerant to certain classes of site-specific fungicides
 - Need to know what management tools work for which rot types
- Consistency of CFR species year-to-year in beds.
 - Similar to NJ, unlike Wisconsin (Wells-Hansen & McManus, 2017).
 - Tend to be diverse populations
- Continued testing on 2023 isolates
 - Spore germination assays
 - 2024 Isolates...
 - Keeping an eye out for resistance development

New Project: S.A.M.E.(Systems Approach in Managing the Expression of CFRs)

- Across all 5 cranberry-producing states (Wisconsin, Massachusetts, New Jersey, Oregon, Washington).
- Isolating Cranberry Fruit Rots from bloom through harvest
 - Identification, testing fungicides & molecular ID tools

Acknowledgements

- Funding for the project was provided by a grant from the Northwest Center for Small Fruit Research and base funds from USDA Project 2072-22000-045-00D.
- Sincere thanks to the growers who allowed us to sample their cranberry beds and to Rod Keller, Gayle McGhee and Brenda Shaffer for excellent technical assistance!

USD

Northwest Center

FOR SMALL FRUITS RESEARCH

1992

Questions?